Abstract
Introduction: The State-Trait Anxiety Inventory (STAI) is an instrument designed to assess anxiety with two subscales: State-Anxiety (STAI-S), understood as a transitory state, and Trait-Anxiety (STAI-T), conceptualized as a predisposing trait to perceive a lot of situations as threatening. Objective: The aim of this study was to adapt the STAI and report its psychometric properties in adults from Santiago, Chile. Methodology: An adaptation of the scales was carried out with a panel of experts. The STAI was administered to a sample of 257 adults from Santiago. Cronbach's alpha and ordinal alpha were used to assess reliability. A Confirmatory Factor Analysis (CFA) was performed to determine the factor structure of each subscale. Results: High internal consistency was found for both scales. The CFA revealed that, in STAI-E and STAI-R, the bifactor model showed the best level of fit, followed by the two-factor model. Discussion: Adequate psychometric properties of the instrument are preserved in the population. The CFA shows evidence of multidimensional aspects in each subscale. This seems to be a consequence of method effects due to the use of reverse-scored items rather than the actual assessment of two different constructs, such as presence and absence of anxiety.
References
Asociación Chilena de Seguridad y la Universidad Católica. (2024). Termómetro de la salud mental en Chile ACHS-UC: Novena ronda. https://bit.ly/3JiRcVB
Asún, R. A., Rdz-Navarro, K. y Alvarado, J. M. (2016). Developing multidimensional Likert scales using item factor analysis: The case of four-point items. Sociological Methods & Research, 45(1), 109-133. https://doi.org/10.1177/0049124114566716
Bados, A., Gómez-Benito, J. y Balaguer, G. (2010). The state-trait anxiety inventory, Trait version: Does it really measure anxiety? Journal of Personality Assessment, 92(6), 560–567. https://doi.org/10.1080/00223891.2010.513295
Balsamo, M., Romanelli, R., Innamorati, M., Ciccarese, G., Carlucci, L. y Saggino, A. (2013). The state-trait anxiety inventory: Shadows and lights on its construct validity. Journal of Psychopatholy and Behavioral Assessment, 35, 475–486. https://doi.org/10.1007/s10862-013-9354-5
Bandelow, B. y Michaelis, S. (2015). Epidemiology of anxiety disorders in the 21st century. Dialogues in Clinical Neuroscience, 17(3), 327-335. https://doi.org/gjsh8x
Barlow, D.H. (2002). Anxiety and its disorders: The nature and treatment of anxiety and panic (2a ed). Guilford Press.
Barlow, D. H., Durand, V. M. y Hofmann, S. G. (2018). Abnormal Psychology: An Integrative Approach (8a ed.). Cengage Learning.
Baxter, A. J., Scott, K. M., Ferrari, A. J., Norman, R. E., Vos, T. y Whiteford, H. A. (2014). Challenging the myth of an “epidemic” of common mental disorders: trends in the global prevalence of anxiety and depression between 1990 and 2010. Depression and Anxiety, 31(6), 506-516. https://doi.org/10.1002/da.22230
Bernstein, I.H. y Eveland, D. C. (1982). State vs trait anxiety: A case study in confirmatory factor analysis. Personality and Individual Differences, 3(4), 361–372. https://doi.org/10.1016/0191-8869(82)90002-2
Campo-Arias, A. y Oviedo, H. C. (2008). Propiedades psicométricas de una escala: La consistencia interna. Revista de Salud Pública, 10(5), 831-839. https://doi.org/10.1590/S0124-00642008000500015
Cattell, R. B. y Scheier, I. H. (1961). The meaning and measurement of neuroticism and anxiety. Ronald.
DiStefano, C., Liu, J., Jiang, N. y Shi, D. (2017). Examination of the Weighted Root Mean Square Residual: Evidence for trustworthiness? Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 453–466. https://doi.org/gc7qs7
Dueber, D. M. (2017). Bifactor indices calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. https://doi.org/10.13023/edp.tool.01
Escobar-Pérez, J. y Cuervo-Martínez, Á. (2008). Validez de contenido y juicio de expertos: Una aproximación a su utilización. Avances en Medición, 6, 27–36.
Espinoza, S. C. y Novoa-Muñoz, F. (2018). Ventajas del alfa ordinal respecto al alfa de Cronbach ilustradas con la encuesta AUDIT-OMS. Revista Panamericana de Salud Pública, 42, e65. https://doi.org/10.26633/RPSP.2018.65
Finney, S., DiStefano, C. y Kopp, J. P. (2016). Overview of estimation methods and preconditions for their application with structural equation modeling. En K. Schweizer y C. DiStefano (Eds.), Principles and methods of test construction: Standards and recent advances (pp. 135–165). Hogrefe Publishing.
Fonseca-Pedrero, E., Paino, M., Sierra-Baigrie, S., Lemos-Giráldez, S., y Muniz, J. (2012). Propiedades psicométricas del «cuestionario de ansiedad estado-rasgo» (STAI) en universitarios. Revista Internacional de Psicología Clínica y de la Salud, 20(3), 547-561. http://www.p3-info.es/PDF/PropiedadespsicomeetricasdelSTAI.pdf
Frías-Navarro, D. (2022). Apuntes de estimación de la fiabilidad de consistencia interna de los ítems de un instrumento de medida. Universidad de Valencia. https://www.uv.es/friasnav/AlfaCronbach.pdf
González-Fraile, E., Domínguez-Panchón, A. I., Fernández-Catalina, P. y Gonçalves-Pereira, M. (2014). The different versions of the state-trait anxiety inventory. Revista de Psiquiatría y Salud Mental (English Edition), 7(3), 151–152. https://doi.org/10.1016/j.rpsmen.2014.06.005
Guillén-Riquelme, A. (2014). Validación de la adaptación española del State-trait Anxiety Inventory en diferentes muestras españolas [Tesis de doctorado, Universidad de Granada]. https://digibug.ugr.es/handle/10481/34045
Guillén-Riquelme, A. y Buela-Casal, G. (2011). Actualización psicométrica y funcionamiento diferencial de los ítems en el State-trait Anxiety Inventory (STAI). Psicothema, 23(3), 510–515. https://bit.ly/4nbqJHk
Guillén-Riquelme, A., y Buela-Casal, G. (2015). Estructura factorial del Cuestionario de Ansiedad Estado-Riesgo (STAI) para pacientes diagnosticados con depresión. Salud Mental, 38(4), 293-298. https://doi.org/10.17711/sm.0185-3325.2015.040
Hu, L. y Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Javaid, S. F., Hashim, I. J., Hashim, M. J., Stip, E., Samad, M. A. y Ahbabi, A. A. (2023). Epidemiology of anxiety disorders: global burden and sociodemographic associations. Middle East Current Psychiatry, 30(1). https://doi.org/10.1186/s43045-023-00315-3
Knowles, K. A. y Olatunji, B. O. (2020). Specificity of trait anxiety in anxiety and depression: Meta-analysis of the state-trait anxiety inventory. Clinical Psychology Review, 82, 101928. https://doi.org/10.1016/j.cpr.2020.101928
Kyriazos, T. A. (2018). Applied psychometrics: Sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology, 9(8), 2207–2230. https://doi.org/10.4236/psych.2018.98126
Lagos-San Martín, N., Hermosilla-Cabrera, V., García-Fernández, J., Palma-Luengo, M., y Ossa-Cornejo, C. (2022). Evaluación de un programa de desarrollo personal para estudiantado chileno de educación secundaria. Revista Electrónica Educare, 26(3), 337-353. https://doi.org/10.15359/ree.26-3.19
MacCallum, R. C., Browne, M. W. y Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. https://doi.org/10.1037/1082-989X.1.2.130
Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis intesting normality and robustness studies. Sankhyā: The Indian Journal of Statistics, 36, 115-128.
Matsunaga, M. (2010). How to factor-analyze your data right: Do’s, don’ts, and how-to’s. International Journal of Psychological Research, 3(1), 97–110. https://doi.org/gdvms5
Muthén, L. K. y Muthén, B. O. (1998-2015). Mplus user’s guide. Seventh Edition. Muthén & Muthén.
Ortuño-Sierra, J., García-Velasco, L., Inchausti, F., Debbané, M. y Fonseca-Pedrero, E. (2016). New approaches on the study of the psychometric properties of the STAI. Actas Españolas de Psiquiatría, 44(3), 83–92.
Ponce, F. P., Torres Irribarra, D., Vergés, A. y Arias, V. B. (2023). The ephemeral nature of wording effects. Journal of Personality and Social Psychology, 125(6), 1472–1494. https://doi.org/10.1037/pspp0000471
Posit Team. (2024). RStudio: Integrated Development Environment for R (Version 2023.12.1+402) [Computer software]. Posit Software, PBC. http://www.posit.co/
Pretorius, T. (2021). Over reliance on model fit indices in confirmatory factor analyses may lead to incorrect inferences about bifactor models: A cautionary note. African Journal of Psychological Assessment, 3, a35. https://doi.org/10.4102/ajopa.v3i0.35
Quezada-Scholz, V. E., Laborda, M. A., San Martín, C., Miguez, G., Alfaro, F., Mallea, J., y Díaz, F. (2022). Cued fear conditioning in humans using immersive Virtual Reality. Learning And Motivation, 78, 101803. https://doi.org/10.1016/j.lmot.2022.101803
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667–696. https://doi.org/10.1080/00273171.2012.715555
Reise, S. P., Bonifay, W. E. y Haviland, M. G. (2013a). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95(2), 129-140. https://doi.org/10.1080/00223891.2012.725437
Reise, S. P., Mansolf, M. y Haviland, M. G. (2023). Bifactor measuring models. En R. H. Hoyle (Ed.), Handbook of structural equation modeling (2a ed., pp. 329-348). Guilford Press.
Reise, S. P., Moore, T. M. y Haviland, M. G. (2010). Bifactor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544–559.https://doi.org/dhs432
Reise, S. P., Scheines, R., Widaman, K. F. y Haviland, M. G. (2013b). Multidimensionality and structural coefficient bias in structural equation modeling a bifactor perspective. Educational and Psychological Measurement, 73(1), 5-26. https://doi.org/10.1177/0013164412449831
Reyes-Abarca, M. L. (2021). Implementación de una intervención basada en la terapia de aceptación y compromiso para pacientes con dolor crónico adaptada al contexto del CRS Cordillera Oriente [Tesis de maestría]. https://doi.org/10.7764/tesisuc/psi/57948
Rodriguez, A., Reise, S. P. y Haviland, M. G. (2016). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98(3), 223–237. https://doi.org/10.1080/00223891.2015.1089249
Ropovik, I. (2015). A cautionary note on testing latent variable models. Frontiers in Psychology, 6, 1715. https://doi.org/10.3389/fpsyg.2015.01715
Schermelleh-Engel, K., Moosbrugger, H. y Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research 8(2), 23-74. https://doi.org/10.23668/psycharchives.12784
Stucky, B. D. y Edelen, M. O. (2015). Using hierarchical IRT models to create unidimensional measures from multidimensional data. En S. P. Reise y D. A. Revicki (Eds.), Handbook of item response theory modeling: Applications to typical performance assessment (pp. 183-206). Routledge.
Spielberger, C. D., Gorsuch, R. y Lushene, R. (1970). Manual for the state-trait anxiety inventory. Consulting Psychologist Press.
Spielberger, C. D. y Reheiser, E. C. (2009), Assessment of emotions: Anxiety, anger, depression, and curiosity. Applied Psychology: Health and Well-Being, 1, 271-302. https://doi.org/10.1111/j.1758-0854.2009.01017.x
Thomas, C. L. y Cassady, J. C. (2021). Validation of the state version of the state-trait anxiety inventory in a university sample. SAGE Open, 11(3), 215824402110319. https://doi.org/10.1177/21582440211031900
Vagg, P. R., Spielberger, C. D. y O'Hearn, T. P. (1980). Is the state-trait anxiety inventory multidimensional? Personality and Individual Differences, 1(3), 207–214. https://doi.org/10.1016/0191-8869(80)90052-5
Vautier, S. y Pohl, S. (2009). Do balanced scales assess bipolar constructs? The case of the STAI scales. Psychological Assessment, 21(2), 187–193. https://doi.org/10.1037/a0015312
Vera-Villarroel, P., Celis-Atenas, K., Córdova-Rubio, N., Buela-Casal, G. y Spielberger, C. (2007). Preliminary analysis and normative data of the state-trait anxiety inventory (STAI) in adolescent and adults of Santiago, Chile. Terapia Psicológica, 25(2), 155–162. https://doi.org/10.4067/S0718-48082007000200006
Vigneau, F. y Cormier, S. (2008). The factor structure of the state-trait anxiety inventory: An alternative view. Journal of Personality Assessment, 90(3), 280–285. https://doi.org/10.1080/00223890701885027
Vinet, E. V., Rodríguez-Cancino, M., Sandoval-Dominguez, A., Rojas-Mora, P. y Saiz J. L. (2023). El empleo de test por psicólogos/as chilenos/as: Un inquietante panorama. Psykhe 32(1) 1–19. https://doi.org/10.7764/psykhe.2020.25293
Wirth, R. J. y Edwards, M. C. (2007). Item factor analysis: current approaches and future directions. Psychological Methods, 12(1), 58–79. https://doi.org/10.1037/1082-989X.12.1.58
World Health Organization. (2017). Depression and other common mental disorders: Global health estimates. https://bit.ly/3WdudOO
Zhang, X., Noor, R. y Savalei, V. (2016). Examining the effect of reverse worded items on the factor structure of the need for cognition scale. PLoS ONE, 11(6), e0157795. https://doi.org/10.1371/journal.pone.0157795
Zsido, A. N., Teleki, S. A., Csokasi, K., Rozsa, S. y Bandi, S. A. (2020). Development of the short version of the spielberger state—trait anxiety inventory. Psychiatry Research, 291, 113223. https://doi.org/10.1016/j.psychres.2020.113223

